浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄩ偦浜岀~鍚″暥鑱氫箼浜岄唶鐞ョ弨閰颁簹鑳虹晶鐢插熀閰紝浜у搧鍙栦唬鐜?gt;90%銆侟/p>
銆€銆€閿嚡绉戞妧鐢熶骇鐨勫紓鍙屽姛鑳藉矾鍩哄悺鍟禤EG鐞ョ弨閰颁簹鑳哄熀缇х敳鍩洪叝浜у搧閫氬父鐢ㄤ綔涓ょ涓嶅悓鍖栧鐗╄川鐨勪氦鑱斿墏鎴栭棿闅旂墿銆傛寮傚姛鑳絇EG琛嶇敓鐗╀腑鐨凱EG閮ㄥ垎鍙彁渚涙按婧舵€с€佺敓鐗╃浉瀹规€у強鏌旀€с€傛浜у搧涓撻棬搴旂敤浜庢姉浣撳伓鑱旇嵂鐗?ADC’s)鐨勫紑鍙戙€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵OPSS-PEG-SCM浜у搧鐨勫父瑙勫垎瀛愰噺鏄?000 Da,3500 Da, 5000 Da, 7500 Da鐨勫绉嶈鏍煎寘瑁呬骇鍝併€侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑OPSS-PEG-SCM琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€ 閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Ye, J., et al., Cellular uptake mechanism and comparative in vitro cytotoxicity studies of monomeric LMWP-siRNA conjugate, Journal of Industrial and Engineering Chemistry, 2018.
銆€銆€2. Lee, K., et al., Enhanced accumulation of theranostic nanoparticles in brain tumor by external magnetic field mediated in situ clustering of magnetic nanoparticles, Journal of Industrial and Engineering Chemistry, 2017.
銆€銆€3. Feng, Y., et al., Evaluation of Electrospun PCL-PIBMD Meshes Modified with Plasmid Complexes in Vitro and in Vivo. Polymers, 2016, 8(3), p.58.
銆€銆€4. Braun, G.B., et al., Urokinase-controlled tumor penetrating peptide. Journal of Controlled Release, 2016, 232:188-95.
銆€銆€5. Shin M.C., et al., Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity. Pharmaceutical research, 2016, 1-1.
銆€銆€6. Zhou, F., et al., Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan. Biomaterials science, 2016, 4(5):849-56.
銆€銆€7. Sugahara, K.N., et al., Tumor-Penetrating iRGD Peptide Inhibits Metastasis, Mol. Cancer Ther., 2015, 14, 120.
銆€銆€8. Wang, H., et al., Targeting REDV peptide functionalized polycationic gene carrier for enhancing the transfection and migration capability of human endothelial cells, J. Mater. Chem. B, 2015, 3, 3379-3391.
銆€銆€9. Braun, G.B., Etchable and Bright Silver Nanoparticle Probes for Cell Internalization Assays, Nature Materials, 2014, 13, p: 904–911.
銆€銆€10. Pang, H.B., et al., An endocytosis pathway initiated through 鈥媙europilin-1 and regulated by nutrient availability, Nature Communications, 2014, 5:4904.
銆€銆€11. Shin, M.C., et al., Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy, Journal of Controlled Release, 194(28), 2014, p: 197-210.
銆€銆€12. Minai, L., et al., High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation, Scientific Reports, 2013, 3 : 2146.
銆€銆€13. Yeheskely-Hayon, D., et al., Optically Induced Cell Fusion Using Bispecific Nanoparticles, Small, 2013.
銆€銆€14. Agemy, L., et al., Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma PNAS, 2011, 108(42), 17450-17455.
銆€銆€15. Whaley Bishnoi, S., et al., SERS Biodetection Using Gold–Silica Nanoshells and Nitrocellulose Membranes, Analytical Chemistry, 2011, 83(11), p: 4053–4060.
16.Laskar, P, et al., Octadecyl chain-bearing PEGylated poly (propyleneimine)-based dendrimersomes: physicochemical studies, redox-responsiveness, DNA condensation, cytotoxicity and gene delivery to cancer cells. Biomaterials Science. 2021, 9(4):1431-48.
17.Tobi, A, et al., Silver nanocarriers targeted with a CendR peptide potentiate the cytotoxic activity of an anticancer drug. Advanced Therapeutics. 2021, 4(1):2000097.
18.Pleiko, K, et al., In vivo phage display: identification of organ-specific peptides using deep sequencing and differential profiling across tissues. Nucleic acids research. 2021, 49(7):e38.
浜у搧璇环