浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄩ┈鏉ラ叞浜氳兒鍩鸿仛涔欎簩閱囩晶閰革紝浜у搧鍙栦唬鐜?ge;95%銆侟/p>
銆€銆€閿嚡绉戞妧鐢熶骇鐨勫紓鍙屽姛鑳介┈鏉ラ叞浜氳兒PEG涔欓吀浜у搧閫氬父鐢ㄤ綔涓ょ涓嶅悓鍖栧鐗╄川鐨勪氦鑱斿墏鎴栭棿闅旂墿銆傛寮傚姛鑳絇EG琛嶇敓鐗╀腑鐨凱EG閮ㄥ垎鍙彁渚涙按婧舵€с€佺敓鐗╃浉瀹规€у強鏌旀€с€傛浜у搧涓撻棬搴旂敤浜庢姉浣撳伓鑱旇嵂鐗?ADC’s)鐨勫紑鍙戙€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵MAL-PEG-CM鍒嗗瓙閲?000 Da,3500 Da, 5000 Da, 7500 Da鐨勪骇鍝?鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑MAL-PEG-CM琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Wu, D., et al., RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration, Acta biomaterialia, 2018, 72, pp.266-277.
銆€銆€2. Alibolandi, M., et al., Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma, International Journal of Pharmaceutics, 2018, V. 549 (1–2), P. 67-75.
銆€銆€3. Alibolandi, M., et al., Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. International Journal of Pharmaceutics, 2017, 519(1):352-64.
銆€銆€4. Zhao, L., et al., An intraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion cell degeneration. Journal of Controlled Release, 2017.
銆€銆€5. Brinkman, A.M., et al., Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials, 2016, 101:20-31.
銆€銆€6. Chen, G., et al., Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging, Biomaterials, 2015, 47 p:41-50.
銆€銆€7. Saraswathy, M., et al., Multifunctional drug nanocarriers formed by cRGD-conjugated βCD-PAMAM-PEG for targeted cancer therapy, Colloids and Surfaces B: Biointerfaces, 2015, 126, p. 590-597.
銆€銆€8. Guo, J., et al.,Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging, ACS Appl. Mater. Interfaces, 2014, 6(24), p: 21769–21779
銆€銆€9. Guo, J., et al., Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles, Biomaterials, 2013, 34(33), p: 8323–8332.
銆€銆€10. Gao, X., et al., Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomedicine, 2012, 7: p. 4037-51.
銆€銆€11.Babaei, M., et al., Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo, European Journal of Pharmaceutics and Biopharmaceutics, 2020.
銆€銆€12.Ramezani, P., et al., Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer, Colloids and Surfaces B: Biointerfaces, 2020, 193, 111135.
13.Li, C, et al., Targeted Delivery of Dual Anticancer Drugs Based on Self-Assembled iRGD-Modified Soluble Drug–Polymer Pattern Conjugate Nanoparticles. ACS Applied Bio Materials. 2021, 4(2):1499-507.
浜у搧璇环