浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄩ┈鏉ラ叞浜氳兒鍩鸿仛涔欎簩閱囩緹鍩轰骇鍝侊紝浜у搧鍙栦唬鐜?ge;95%銆侟/p>
銆€銆€閿嚡绉戞妧鐢熶骇鐨勫紓鍙屽姛鑳介┈鏉ラ叞浜氳兒PEG缇熷熀浜у搧閫氬父鐢ㄤ綔涓ょ涓嶅悓鍖栧鐗╄川鐨勪氦鑱斿墏鎴栭棿闅旂墿銆傛寮傚姛鑳絇EG琛嶇敓鐗╀腑鐨凱EG閮ㄥ垎鍙彁渚涙按婧舵€с€佺敓鐗╃浉瀹规€у強鏌旀€с€傛浜у搧涓撻棬搴旂敤浜庢姉浣撳伓鑱旇嵂鐗?ADC’s)鐨勫紑鍙戙€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵MAL-PEG-OH鍒嗗瓙閲?000 Da,3500 Da, 5000 Da, 7500 Da鐨勪骇鍝?鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑MAL-PEG-OH琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Xu, X., et al., Efficient and targeted drug/siRNA co-delivery mediated by reversibly crosslinked polymersomes toward anti-inflammatory treatment of ulcerative colitis (UC), Nano Research, 2019, 1-9.
銆€銆€2. Mozhi, A., et al., Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy, International Journal of Pharmaceutics, 2018, 547(1–2), P. 582-592.
銆€銆€3. Sarmanova, O.E., et al., A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks, Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(4), pp.1371-1380.
銆€銆€4. Fang, Z., et al., Targeted osteosarcoma chemotherapy using RGD peptide-installed doxorubicin-loaded biodegradable polymeric micelle, Biomedicine & Pharmacotherapy, 2017, V. 85, P. 160-168.
銆€銆€5. Wang, Y., et al., Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy, ACS applied materials & interfaces, 2017, 9(36):30297-305.
銆€銆€6. Mondal, G., et al., EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer, Biomacromolecules, 2016, 17 (1), pp 301–313.
銆€銆€7. Li, C., et al., Design, preparation and characterization of cyclic RGDfK peptide modified poly (ethylene glycol)-block-poly (lactic acid) micelle for targeted delivery, Materials Science and Engineering: C, 2016.
銆€銆€8. Gu, D., et al., Amphiphilic core cross-linked star polymers as water-soluble, biocompatible and biodegradable unimolecular carriers for hydrophobic drugs, Polym. Chem., 2015, 6, 6475-6487.
銆€銆€9. Prabhakar, N., et al., Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging, Nanoscale, 2015, 7, 10410-10420.
銆€銆€10. Ding, G.-B., et al., Integrin αVβ3-Targeted Magnetic Nanohybrids with Enhanced Antitumor Efficacy, Cell Cycle Arrest Ability, and Encouraging Anti-Cell-Migration Activity, ACS Appl. Mater. Interfaces, 2014, 6 (19), p: 16643–16652.
銆€銆€11. Song, W., et al., Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials, 2014, 35(9): p. 3005-3014.
銆€銆€12. Liu, J., et al., Effect of site-specific PEGylation on the fibrinolytic activity, immunogenicity, and pharmacokinetics of staphylokinase, Acta Biochim Biophys Sin, 2014, 46 (9): 782-791.
銆€銆€13. Li, Y., et al., Docetaxel-Encapsulating Small-Sized Polymeric Micelles with Higher Permeability and Its Efficacy on the Orthotopic Transplantation Model of Pancreatic Ductal Adenocarcinoma, Int. J. Mol. Sci., 2014, 15(12), 23571-23588.
銆€銆€14. Pridgen, E. M., et al., Transepithelial Transport of Fc -Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery, Sci Transl Med., 2013, 5(213).
銆€銆€15. Shen, J., et al., Poly(ethylene glycol)-block-poly(d,l-lactide acid) micelles anchored with angiopep-2 for brain-targeting delivery, Journal of Drug Targeting, 2011, 19:3.
銆€銆€16. Zhan, C., et al., Loop 2 of Ophiophagus hannah Toxin b Binds with Neuronal Nicotinic Acetylcholine Receptors and Enhances Intracranial Drug Delivery, Mol. Pharmaceutics, 2010, 7(6), p: 1940–1947.
銆€銆€17. Zhan, C., et al., Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect, Journal of Controlled Release, 2010, 143:1, P. 136-142.
18.Dogan, A. Leveraging thermodynamic interactions to enhance drug delivery. Diss. Case Western Reserve University, 2021.
19.Fan, N., et al., Preparation of an HI-6-loaded brain-targeted liposomes based on the nasal delivery route and the evaluation of its reactivation of central toxic acetylcholinesterase, European Journal of Pharmaceutical Sciences, 184, 2023.
浜у搧璇环