浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鐢熶骇鍙斾竵姘х景姘ㄥ熀鑱氫箼浜岄唶鑳虹洂閰哥洂浜у搧涓惈鏈夌敱tBoc鍩哄洟淇濇姢鐨勮兒鍙婅兒鐨勭洂閰哥洂锛岄€氬父鐢ㄤ綔涓ょ涓嶅悓鍖栧鐗╄川鐨勪氦鑱斿墏鎴栭棿闅旂墿銆傛寮傚姛鑳絇EG琛嶇敓鐗╀腑鐨凱EG閮ㄥ垎鍙彁渚涙按婧舵€с€佺敓鐗╃浉瀹规€у強鏌旀€с€傛浜у搧涓撻棬搴旂敤浜庢姉浣撳伓鑱旇嵂鐗?ADC’s)鐨勫紑鍙戙€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵TBOC-PEG-NH2HCl鍒嗗瓙閲?000 Da,3500 Da, 5000 Da, 7500 Da鐨勪骇鍝?鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑TBOC-PEG-NH2HCl琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Ai, F., et al., An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy, Nanoscale, 2018, 10(9), pp.4432-4441.
銆€銆€2. Huo, M., et al., Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment, Journal of Controlled Release, 2017, V. 245, P. 81-94.
銆€銆€3. Gajbhiye, K.R., et al., Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: An in vitro-in vivo study, Scientific Reports, 2017, 7: 11086.
銆€銆€4. Li, Y., et al., A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy, RSC Adv., 2016, 6, 6516-6522.
銆€銆€5. Zhang, X., et al., Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells. Inorganic chemistry, 2016, 55(8):3872-80.
銆€銆€6. Zhao, Y., et al., Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma, Biomaterials, 2015, V. 68, P. 54-66.
銆€銆€7. Li, H., et al., Dual MMP7-Proximity-Activated and Folate Receptor-Targeted Nanoparticles for siRNA Delivery, Biomacromolecules, 2015, 16 (1), p: 192–201.
銆€銆€8. Liu, J., et al., Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo, Nanoscale, 2015, 7, 4451-4460.
銆€銆€9. Baker, D.W., et al., Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions. Acta Biomaterialia, 2014, 10(7): p. 2945-2955.
銆€銆€10. Hsu, H.-J., et al., Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles, Macromolecules, 2014, 47 (19), pp 6911–6918.
銆€銆€11. Miao, L., et al., Nanoparticles with Precise Ratiometric Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer, Adv. Funct. Mater., 2014, 24: 6601–6611.
銆€銆€12. Guo, S., et al., Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS nano, 2014, 8(5):4996-5009.
銆€銆€13. Zhou, J., et al., In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe, Bioorganic & Medicinal Chemistry Letters, 2013, 23(7), p: 2044-2047.
銆€銆€14. Baker, D.W., The Pivotal Role Of Fibrocytes On Foreign Body Reactions, UTA, 2013.
銆€銆€15. Li, D., et al., A novel chlorin–PEG–folate conjugate with higher water solubility, lower cytotoxicity, better tumor targeting and photodynamic activity, Journal of Photochemistry and Photobiology B: Biology, 2013, 127, 5, p. 28-37.
銆€銆€16. Cao, P., et al., Improving Lanthanide Nanocrystal Colloidal Stability in Competitive Aqueous Buffer Solutions using Multivalent PEG-Phosphonate Ligands, Langmuir, 2012, 28(35), pp 12861–12870.
17. Han, Y., et al., Effective oral delivery of Exenatide-Zn2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy, Biomaterials, 2021, V. 275.
浜у搧璇环