浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€鍙斾竵姘х景姘ㄥ熀鑱氫箼浜岄唶缇熷熀浜у搧锛屽彲浠ュ厛鍒╃敤缇熷熀涓€绔笌鐩稿簲鑽墿鎴栧寲瀛﹀垎瀛愮浉缁撳悎锛岀劧鍚庤劚闄oc淇濇姢鍩猴紝鍒╃敤姘ㄥ熀涓庡彟涓€鑽墿鎴栧寲瀛﹀垎瀛愮浉缁撳悎锛屼粠鑰岃揪鍒颁竴涓仛涔欎簩閱囧垎瀛愯繛鎺ヤ袱绉嶈嵂鐗╁垎瀛愮殑鐩殑銆傛浜у搧鍏锋湁鑹ソ鐨勬按婧舵€с€佺敓鐗╃浉婧舵€у拰鏌旀€э紝瓒婃潵瓒婂鐨勫簲鐢ㄤ簬鎶椾綋鑽墿鍋惰仈鐗╀腑銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵TBOC-PEG-OH鍒嗗瓙閲?000 Da,3500 Da, 5000 Da, 7500 Da鐨勪骇鍝?鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑TBOC-PEG-OH琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Abstiens, K., et al., Interaction of functionalized nanoparticles with serum proteins and its impact on colloidal stability and cargo leaching, Soft matter., 2019.
銆€銆€2. Yu, H., et al., Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin, Journal of Controlled Release, 2015, 216, P. 111-120.
銆€銆€3. Sunoqrot, S., et al., Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles, Journal of Controlled Release, 2014, 191, P. 115-122.
銆€銆€4. Matini, T., Synthesis and characterization of variable conformation pH responsive block co-polymers for nucleic acid delivery and targeted cell entry, Polym. Chem., 2014, 5, 1626
銆€銆€5. Sunoqrot, S., A Multi-Scale Hybrid Nanoparticle Platform with Controlled Cellular Interaction and Targeting Kinetics ,University of Illinois at Chicago, 2013, p:74, 109.
銆€銆€6. Sunoqrot, S., et al., In Vitro Evaluation of Dendrimer-Polymer Hybrid Nanoparticles on Their Controlled Cellular Targeting Kinetics, Mol Pharm., 2013, 10(6): 2157–2166.
浜у搧璇环