浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ矾鍩鸿仛涔欎簩閱囩惀鐝€閰颁簹鑳哄熀鎴婁簩閰拌兒锛屼骇鍝佸彇浠g巼澶т簬绛変簬95%銆侟/p>
銆€銆€閿嚡绉戞妧鐢熶骇鐨勫紓鍙屽姛鑳界~閱嘝EG鐞ョ弨閰颁簹鑳哄熀鎴婁簩閰拌兒(NHS閰?浜у搧閫氬父鐢ㄤ綔涓ょ涓嶅悓鍖栧鐗╄川鐨勪氦鑱斿墏鎴栭棿闅旂墿銆傛寮傚姛鑳絇EG琛嶇敓鐗╀腑鐨凱EG閮ㄥ垎鍙彁渚涙按婧舵€с€佺敓鐗╃浉瀹规€у強鏌旀€с€傛浜у搧涓撻棬搴旂敤浜庢姉浣撳伓鑱旇嵂鐗?ADCs)鐨勫紑鍙戙€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑HS-PEG-SGA琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Barros, D., et al., An affinity-based approach to engineer laminin-presenting cell instructive microenvironments, Biomaterials, 2019, 192:601-11.
銆€銆€2. Lee, K., et al., Enhanced accumulation of theranostic nanoparticles in brain tumor by external magnetic field mediated clustering of magnetic nanoparticles, Journal of Industrial and Engineering Chemistry, 2017, 54, P. 389-397.
銆€銆€3. Harrison, E., et al., A Comparison of Gold Nanoparticle Surface Co-functionalization and the Effect on Stability, Non-specific Protein Adsorption and Internalization. Materials Science and Engineering: C, 2016.
銆€銆€4. Dixon, D., et al., Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles, World Academy of Science, Engineering and Technology Transactions on Biotechnology and Bioengineering, 2015, 3:8.
銆€銆€5. An, S., et al., Single-component self-assembled RNAi nanoparticles functionalized with tumor-targeting iNGR delivering abundant siRNA for efficient glioma therapy, Biomaterials, 2015, 53, P. 330-340.
銆€銆€6. Harrison, E., et al., Gold Nanoparticles Co-functionalised with Poly Ethylene Glycol (PEG) and RME Peptide using Mixed Monolyers and PEG Linker Approaches, AFPM, 2015.
浜у搧璇环