浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ弻绔箼鐑牅鑱氫箼浜岄唶浜у搧锛屼骇鍝佸彇浠g巼≥90%銆侟/p>
銆€銆€閿嚡绉戞妧鐢熶骇鐨勫弻涔欑儻鐮淧EG鏄竴绉嶅湪楂榩h鐜杩涜纭熀PEG淇グ鐨勭~閱囧弽搴旀€у悓鍙屽姛鑳絇EG銆傞敭鍑鎶€鐨勫悓鍙屽姛鑳絇EG琛嶇敓鐗╁彲浣滀负浜よ仈鍓傚箍娉涘簲鐢ㄤ簬铔嬬櫧璐ㄥ拰鑲界殑PEG淇グ銆佺撼绫抽绮掑強琛ㄩ潰鏀规€т腑銆備笌浣跨敤绾挎€EG淇グ鐨勫井绮掔浉姣旓紝涓庡悓鍙屽姛鑳絇EG缂€鍚堢殑棰楃矑鍙繚璇佹洿楂樼殑杞借嵂閲忋€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑VS-PEG-VS琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
References:
- Li, H., et al., Bioengineered three-dimensional scaffolds to elucidate the effects of material biodegradability on cell behavior using POSS-PEG hybrid hydrogels, Polymer Degradation and Stability, 2019, 164:118-26.
- Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, 67, P. 42-52.
- Stoichevska, V., et al., Engineering specific chemical modification sites into a collagen鈥恖ike protein from Streptococcus pyogenes, Journal of Biomedical Materials Research Part A., 2017.
- Heffernan, J.M., et al., Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion, Annals of Biomedical Engineering,, 43:8, p. 1965-1977.
- Addington, C.P., et al., Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels, Biomaterials, 2015, 72, p. 11-19.
- Ma, Y., et al., Artificial microniches for probing mesenchymal stem cell fate in 3D, Biomater. Sci., 2014, 2, 1661.
- Neubauer, M.P., Mechanics of Microparticles in the Context of Structure and Functionality, Universitat Bayreuth, 2014.
浜у搧璇环