浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ弻绔笝鐑吀閰仛涔欎簩閱囦骇鍝侊紝浜у搧鍙栦唬鐜?ge;95%銆侟/p>
銆€銆€閿嚡绉戞妧鐢熶骇鐨勫弻涓欑儻閰搁叝鏄竴绉嶇敤浜庡惈纭熀/纭唶鍒嗗瓙鐨凱EG淇グ鐨勫悓鍙屽姛鑳絇EG銆備笝鐑吀閰€氬父鐢ㄤ簬涔欑儻鍩鸿仛鍚堟垨鍏辫仛鍚堛€傞敭鍑鎶€鐨勫悓鍙屽姛鑳絇EG琛嶇敓鐗╁彲浣滀负浜よ仈鍓傚箍娉涘簲鐢ㄤ簬铔嬬櫧璐ㄥ拰鑲界殑PEG淇グ銆佺撼绫抽绮掑強琛ㄩ潰鏀规€т腑銆備笌浣跨敤绾挎€EG淇グ鐨勫井绮掔浉姣旓紝涓庡悓鍙屽姛鑳絇EG缂€鍚堢殑棰楃矑鍙繚璇佹洿楂樼殑杞借嵂閲忋€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵ACLT-PEG-ACLT鍒嗗瓙閲?000 Da,3500 Da, 5000 Da, 7500 Da鐨勪骇鍝?鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑ACLT-PEG-ACLT琛嶇敓鐗╀骇鍝侊紝濡備綘闇€瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Gottipati, A., et al., Gelatin Based Polymer Cell Coating Improves Bone Marrow-Derived Cell Retention in the Heart after Myocardial Infarction, Stem Cell Reviews and Reports, 2019.
銆€銆€2. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, V. 67, P. 42-52.
銆€銆€3. Tan, J.J., et al.,. Impact of substrate stiffness on dermal papilla aggregates in microgels, Biomaterials science, 2018.
銆€銆€4. Jiang, Z., et al., A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres. Journal of Materials Chemistry B, 2017, 5(1):173-80.
銆€銆€5. Pedron, S., et al., Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness. Biomacromolecules, 2017, 18(4):1393-400.
銆€銆€6. Acun, A., et al., Engineered Myocardium Model to Study the Roles of HIF-1α and HIF1A-AS1 in Paracrine-only Signaling under Pathological Level Oxidative Stress, Acta Biomaterialia, 2017.
銆€銆€7. DiVito, K.A., et al., Data characterizing microfabricated human blood vessels created via hydrodynamic focusing, Data in Brief, 2017, 14, P. 156-162.
銆€銆€8. Liang, Y., et al., Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels, Journal of Biomedical Materials Research Part A, 2016, 104:1, p. 113–123.
銆€銆€9. Feng, Q., et al., Mechanically Resilient, Injectable, and Bioadhesive Supramolecular Gelatin Hydrogels Crosslinked by Weak Host-Guest Interactions Assist Cell Infiltration and In Situ Tissue Regeneration, Biomaterials, 2016.
銆€銆€10. Lilly, J.L., et al., Characterization of Molecular Transport in Ultrathin Hydrogel Coatings for Cellular Immunoprotection, Biomacromolecules, 2015, 16 (2), 541-549
銆€銆€11. Hao, Y., et al., Visible Light Cured Thiol-Vinyl Hydrogels with Tunable Gelation and Degradation, Purdue University Library, 2014.
銆€銆€12. Jing, P., In Vitro Hair Follicle Engineering, National University of Singapore, 2014.
銆€銆€13. Pan, J., Fabrication of a 3D hair follicle-like hydrogel by soft lithography, J Biomed Mater Res Part A, 2013, 101(11):3159-69.
銆€銆€14. Pedron, S., et al., Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy, J. Biomed. Mater. Res., 2013, 101 (12), p. 3404–3415.
15. Basara, G., et al., Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering, Acta Biomaterialia, 2020.
浜у搧璇环