浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€鐢叉哀鍩鸿仛涔欎簩閱囦箼鐑牅鍙互涓庡矾鍩哄湪杈冮珮鐨凱H鏉′欢涓嬭繘琛屽弽搴斿叕鍙哥敓浜х殑鏈骇鍝佺函搴﹂珮璐ㄩ噺濂姐€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑M-VS 浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Xu, L., et al., Oxidized catechol-derived poly (ethylene glycol) for thiol-specific conjugation. Reactive and Functional Polymers, 2017.
銆€銆€2. Mahou, R., et al., Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space, Biomaterials, 2017.
銆€銆€3. Gregoritza, M., et al., Polyanions effectively prevent protein conjugation and activity loss during hydrogel cross-linking, Journal of Controlled Release, 2016.
銆€銆€4. Hammer, N., et al., Protein compatibility of selected cross-linking reactions for hydrogels, Macromol Biosci 2015, 15(3): 405-413.
銆€銆€5. Badescu, G., et al., A New Reagent for Stable Thiol-Specific Conjugation, Bioconjugate Chem., 2014, 25 (3), pp 460–469.
銆€銆€6. Khargharia, S., et al., PEG length and chemical linkage controls polyacridine peptide DNA polyplex pharmacokinetics, biodistribution, metabolic stability and in vivo gene expression, Journal of Controlled Release, 2013, 170 (3), p: 325-333.
銆€銆€7. Kizzire, K. L., et al., Stabilizing circulating polyplexes through systematic modification of PEGylated polyacridine peptides in vivo, 2013.
浜у搧璇环