浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄧ敳姘у熀鑱氫箼浜岄唶鐞ョ弨閰颁簹鑳虹⒊閰搁叝浜у搧锛岄€氳繃绋冲畾鐨勮劜鐑烽敭涓嶪NF-2-2h绛変豢鐢熺墿鍒嗗瓙璧栨皑閰稿熀涓婄殑姘ㄥ熀杩涜鍙嶅簲銆備笌M-PEG-SCM鐩告瘮鍏锋湁鏇撮暱鐨勬按瑙e崐琛版湡锛屾洿绋冲畾銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑M-SC 浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Vaillard, V.A., et al., mPEG–NHS carbonates: Effect of alkyl spacers on the reactivity: Kinetic and mechanistic insights, Journal of Applied Polymer Science, 2019, 136(5):47028.
銆€銆€2. Ma, S.S., et al., The pharmacokinetic and pharmacodynamic properties of site-specific pegylated genetically modified recombinant human interleukin-11 in normal and thrombocytopenic monkeys, European Journal of Pharmaceutics and Biopharmaceutics, 2017.
銆€銆€3. Zhao, Y.Z., et al., PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA, Journal of Biotechnology, 2017.
銆€銆€4. Lee, K., et al., Enhanced accumulation of theranostic nanoparticles in brain tumor by external magnetic field mediated in situ clustering of magnetic nanoparticles, Journal of Industrial and Engineering Chemistry, 2017.
銆€銆€5. Wan, X., et al., Effect of protein immunogenicity and PEG size and branching on the anti-PEG immune response to PEGylated proteins, Process Biochemistry, 2017, 52:183-91.
銆€銆€6. Fahrlander E., et al., PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent, Nanotechnology, 2015, 26(14):145103.
銆€銆€7. Zhang, J., et al., Magnetic Targeting of Novel Heparinized Iron Oxide Nanoparticles Evaluated in a 9L-glioma Mouse Model, Pharmaceutical Research, 2014, 31:3, pp 579-592.
銆€銆€8. Peng, F., et al., PEGylation of G-CSF in organic solvent markedly increase the efficacy and reactivity through protein unfolding, hydrolysis inhibition and solvent effect. Journal of Biotechnology, 2014, 170: p. 42-49.
銆€銆€9. Mingji Jin, et al, Preparation of pegylated lumbrokinase and an evaluation of its thrombolytic activity both in vitro and in vivo, Acta Pharmaceutica Sinica B, 2013, 3(2) p: 123-129.
銆€銆€10. Zhang, J., et al., Long-Circulating Heparin-Functionalized Magnetic Nanoparticles for Potential Application as a Protein Drug Delivery Platform, Molecular Pharmaceutics, 2013, 10(10), 3892-3902.
銆€銆€11. Jun Wang, et al., An oriented adsorption strategy for efficient solid phase PEGylation of recombinant staphylokinase by immobilized metal-ion affinity chromatography, Process Biochemistry, 2012, 47, 1, p: 106-112.
銆€銆€12. Liu, S.. et al., Mono-PEGylation of ribonuclease A: High PEGylation efficiency by thiolation with small molecular weight reagent, Process Biochemistry, 2012, 47(9), p: 1364-1370.
銆€銆€13. Peng, F., et al., PEGylation of Proteins in Organic Solution: A Case Study for Interferon beta-1b, Bioconjugate Chem., 2012, 23 (9), 1812-1820.
銆€銆€14. Beibei, H., Design, Preparation and in vitro Bioactivity of Mono-PEGylated Recombinant Hirudin, Chin. J. Chem. Eng., 2007, 15(6) 775—780.
15.Ren, M., et al., An oligopeptide/aptamer-conjugated dendrimer-based nanocarrier for dual-targeting delivery to bone. Journal of Materials Chemistry B. 2021, 9(12):2831-44.
浜у搧璇环