浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€Y鍨嬭仛涔欎簩閱囦笝閱涙瘮Y鍒嗘敮涔欓啗鍏锋湁鏇撮珮鐨勫弽搴旀€э紝浣嗛€夋嫨鎬ф病鏈塝鍒嗘敮涔欓啗楂樸€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑Y-PALD鍨嬭鐢熺墿浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Yu, K.-M., et al., Pharmacokinetic and Pharmacodynamic Evaluation of Different PEGylated Human Interleukin-11 Preparations in Animal Models, Journal of Pharmaceutical Sciences, 2018.
銆€銆€2. Yu, K.-M., et al., Preclinical evaluation of the mono-PEGylated recombinant human interleukin-11 in cynomolgus monkeys, Toxicology and Applied Pharmacology, 2018, V. 342, P. 39-49.
銆€銆€3. Liebner, R., et al., Head to Head Comparison of the Formulation and Stability of Concentrated Solutions of HESylated versus PEGylated Anakinra, Journal of Pharmaceutical Sciences, 2015, 104(2): 515-526.
銆€銆€4. Mayolo-Deloisa, K., et al., Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity, Journal of Molecular Recognition, 2015, 28(3): 173-179.
銆€銆€5. Lorey, S., et al, Novel Ubiquitin-derived High Affinity Binding Proteins with Tumor Targeting Properties, J. Biol. Chem., 2014, 289,8493-8507.
銆€銆€6. Farkas, T, et al., Additional Studies in the Separation of PEGylated Proteins by Reversed Phase Chromatography, LC/GC, 2008.
浜у搧璇环