浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ叓鑷傝仛涔欎簩閱囬檷鍐扮墖鐑紙涓夊鎴婂洓閱囨牳锛?浜у搧锛屼骇鍝佸彇浠g巼≥90%銆侟/p>
銆€銆€閿嚡绉戞妧鐨勭洂閰哥洂8鑷侾EG闄嶅啺鐗囩儻(涓夊鎴婂洓閱?琛嶇敓鐗╁彲浠ヤ氦鑱旀垚鍙檷瑙g殑PEG姘村嚌鑳躲€備互涓夎仛瀛f垔鍥涢唶涓烘牳鑱氬悎鑰屾垚鐨?ARM(TP)-PEG鍘熸枡姣斾互鍏仛鐢樻补涓烘牳鑱氬悎鑰屾垚鐨?ARM-PEG鍏锋湁鍒嗘暎搴︿綆锛屽垎瀛愰噺鏇寸簿纭殑浼樺娍銆侾EG姘村嚌鑳跺湪鍖荤枟璁惧鍙婂啀鐢熷尰瀛︿腑鍏锋湁澶氱搴旂敤锛屽挨鍏堕€傜敤浜庤嵂鐗╃紦閲娿€?D涓?D缁嗚優鍩瑰吇鍙婁激鍙g殑瀵嗗皝涓庢剤鍚堢瓑棰嗗煙銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵8ARM(TP)-NB-20K浜у搧 1鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM(TP)-NB浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Dietrich, M., et al., Guiding 3D cell migration in deformed synthetic hydrogel microstructures, Soft matter, 2018, 14(15), pp.2816-2826.
銆€銆€2. Shukla, V., et al., Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine, Annals of biomedical engineering, 2018, 46(1), pp.197-207.
銆€銆€3. Dorsey, T.B., et al., Evaluation of photochemistry reaction kinetics to pattern bioactive proteins on hydrogels for biological applications, Bioactive Materials, 2017.
銆€銆€4. Zhang, J., et al., A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture, Stem Cell Reports, 2017, 8:4, p. 907-918.
銆€銆€5. Holmes, R., et al., Thiol-ene photo-click collagen-PEG hydrogels: impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties, Polymers, 2017, 9(6):226.
銆€銆€6. Valdez, J., et al., On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks, Biomaterials, 2017, v. 130, p. 90-103.
銆€銆€7. Regier, M.C., et al., The Influence of Biomaterials on Cytokine Production in 3D Cultures. Biomacromolecules. 2017, 18(3):709-18.
銆€銆€8. Zanotelli, M.R., et al., Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels, Acta biomaterialia, 2016.
銆€銆€9. Darling, N.J., et al., Thiol-Maleimide Reaction Speed Effects on Hydrogel Homogeneity, Biomaterials, 2015.
銆€銆€10. Le, N.N.T., et al., Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behavior, Acta Biomaterialia, 2015.
銆€銆€11. Pellett, S., et al., Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin, Scientific Reports, 2015, 5:14566.
12. Luo, Y., et al., Light-induced dynamic RGD pattern for sequential modulation of macrophage phenotypes, Bioactive Materials, 2021, V. 6(11), P. 4065-4072.
銆€銆€13.Sofman, M., et al., A modular polymer microbead angiogenesis scaffold to characterize the effects of adhesion ligand density on angiogenic sprouting, Biomaterials, 2021, 264, 120231
14.Wilson, RL, et al, Protein-functionalized poly (ethylene glycol) hydrogels as scaffolds for monolayer organoid culture. Tissue Engineering Part C: Methods. 2021, 27(1):12-23.
15.Khang, A, et al., On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction. Journal of Biomechanical Engineering. 2021, 143(9):094503.
16.Grewal, MG, et al., User-defined, temporal presentation of bioactive molecules on hydrogel substrates using supramolecular coiled coil complexes. Biomaterials Science. 2021.
17.Grigoryan, B, et al., Development, characterization, and applications of multi-material stereolithography bioprinting. Scientific reports. 2021, 11(1):1-3.
18.Anandakrishnan, N, et al., Fast Stereolithography Printing of Large鈥怱cale Biocompatible Hydrogel Models. Advanced Healthcare Materials. 2021, 10(10):2002103.
19.Ortiz-Cárdenas, J.E., et al., Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiol-ene and methacryloyl hydrogels in a microfluidic device. Organs-on-a-Chip, 2022, 100018.
20.Khang, A., et al., Three-dimensional analysis of hydrogel-imbedded aortic valve interstitial cell shape and its relation to contractile behavior. Acta Biomaterialia, 2022.
21.Kim MH, et al., Poly (ethylene glycol)–Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting. ACS Applied Materials & Interfaces. 2023.
浜у搧璇环