浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ叓鑷傝仛涔欎簩閱囦箼鐑牅锛堜笁瀛f垔鍥涢唶鏍革級)浜у搧锛屼骇鍝佸彇浠g巼≥90%銆侟/p>
銆€銆€閿嚡绉戞妧鐨勭洂閰哥洂8鑷侾EG涔欑儻鐮?涓夊鎴婂洓閱?琛嶇敓鐗╁彲浠ヤ氦鑱旀垚鍙檷瑙g殑PEG姘村嚌鑳躲€備互涓夎仛瀛f垔鍥涢唶涓烘牳鑱氬悎鑰屾垚鐨?ARM(TP)-PEG鍘熸枡姣斾互鍏仛鐢樻补涓烘牳鑱氬悎鑰屾垚鐨?ARM-PEG鍏锋湁鍒嗘暎搴︿綆锛屽垎瀛愰噺鏇寸簿纭殑浼樺娍銆侾EG姘村嚌鑳跺湪鍖荤枟璁惧鍙婂啀鐢熷尰瀛︿腑鍏锋湁澶氱搴旂敤锛屽挨鍏堕€傜敤浜庤嵂鐗╃紦閲娿€?D涓?D缁嗚優鍩瑰吇鍙婁激鍙g殑瀵嗗皝涓庢剤鍚堢瓑棰嗗煙銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM(TP)-VS-20K浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Tomaszewski, C.E., et al., Adipose-derived stem cell-secreted factors promote early stage follicle development in a biomimetic matrix, Biomaterials science, 2019.
銆€銆€2. De Rutte, J.M., et al., Scalable High鈥怲hroughput Production of Modular Microgels for In Situ Assembly of Microporous Tissue Scaffolds, Advanced Functional Materials, 2019.
銆€銆€3. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, 67, P. 42-52.
銆€銆€4. Manzoli, V., et al., Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol, American Journal of Transplantation, 2018, 18(3):590-603.
銆€銆€5. Aguilar, V.M., et al., Microcontact-Printed Hydrogel Microwell Arrays for Clonal Muscle Stem Cell Cultures, InSkeletal Muscle Development, 2017, p. 75-92.
銆€銆€6. Cook, C.D., et al., Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function, Integrative Biology, 2017.
銆€銆€7. Valdez, J., et al., On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks, Biomaterials, 2017, v. 130, p. 90-103.
銆€銆€8. Steele, A.N., et al., A novel protein鈥恊ngineered hepatocyte growth factor analog released via a shear鈥恡hinning injectable hydrogel enhances post鈥恑nfarction ventricular function, Biotechnology and Bioengineering, 2017.
銆€銆€9. Zhou, W., et al., Tuning the Mechanical Properties of Poly(Ethylene Glycol) Microgel-Based Scaffolds to Increase 3D Schwann Cell Proliferation, Macromol. Biosci., 2016.
銆€銆€10. Kim, J., et al., Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition, Soft Matter, 2016.
銆€銆€11. Kim, J., et al., Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice, Regenerative Medicine, 2016, 1:16010.
銆€銆€12. Rosales, A.M., et al., Photoresponsive Elastic Properties of Azobenzene-Containing Poly(ethylene-glycol)-Based Hydrogels, Biomacromolecules, 2015.
銆€銆€13. Allazetta, S., et al., Microfluidic Synthesis of Cell-Type-Specific Artificial Extracellular Matrix Hydrogel, Biomacromolecules, 2013, 14(4), p: 1122-1131.
14. Tomaszewski, C. E., et al., Sequestered cell-secreted extracellular matrix proteins improve murine folliculogenesis and oocyte maturation for fertility preservation, Acta Biomaterialia, 2021.
15銆丅elow, C.R., et al., A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nature materials, 2022, 21(1).
16.Babu, S., et al., How do the Local Physical, Biochemical, and Mechanical Properties of an Injectable Synthetic Anisotropic Hydrogel Affect Oriented Nerve Growth?. Advanced Functional Materials. 2022.
17. Gnecco, JS, et al., Organoid co-culture model of the cycling human endometrium in a fully-defined synthetic extracellular matrix reveals epithelial-stromal crosstalk. BioRxiv. 2022.
18.Gnecco, J.S., et al., Organoid co-culture model of the human endometrium in a fully synthetic extracellular matrix enables the study of epithelial-stromal crosstalk, Med, 4(8), 2023.
浜у搧璇环