浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ叓鑷傝仛涔欎簩閱囧矾鍩猴紙涓夊鎴婂洓閱囨牳锛変骇鍝侊紝浜у搧鍙栦唬鐜?ge;90%銆侟/p>
銆€銆€閿嚡绉戞妧鐨勭洂閰哥洂8鑷侾EG宸熀(涓夊鎴婂洓閱?琛嶇敓鐗╁彲浠ヤ氦鑱旀垚鍙檷瑙g殑PEG姘村嚌鑳躲€備互涓夎仛瀛f垔鍥涢唶涓烘牳鑱氬悎鑰屾垚鐨?ARM(TP)-PEG鍘熸枡姣斾互鍏仛鐢樻补涓烘牳鑱氬悎鑰屾垚鐨?ARM-PEG鍏锋湁鍒嗘暎搴︿綆锛屽垎瀛愰噺鏇寸簿纭殑浼樺娍銆侾EG姘村嚌鑳跺湪鍖荤枟璁惧鍙婂啀鐢熷尰瀛︿腑鍏锋湁澶氱搴旂敤锛屽挨鍏堕€傜敤浜庤嵂鐗╃紦閲娿€?D涓?D缁嗚優鍩瑰吇鍙婁激鍙g殑瀵嗗皝涓庢剤鍚堢瓑棰嗗煙銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM(TP)-SH浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Nguyen, M.K., et al., RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects, Acta Biomaterialia, 2018, V. 75, P. 105-114.
銆€銆€2. Lee, S., et al., Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release, Biomaterials Science, 2016.
銆€銆€3. Zhang, W.B., et al., Extended Twilight among Isogenic C. elegans Causes a Disproportionate Scaling between Lifespan and Health, Cell Systems, 2016, 3:4, p. 333-345.e4.
銆€銆€4. Yan, X., et al., A method to accelerate the gelation of disulfide-crosslinked hydrogels, Chinese Journal of Polymer Science, 2015, 33:1, pp 118-127.
銆€銆€5. Nguyen, M.K., et al., Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials, 2014, 35(24): p. 6278-6286.
銆€銆€6. Lee, S., et al., The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels, Acta Biomaterialia, 2014, 10(10) p: 4167–4174.
浜у搧璇环