浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ叓鑷傝仛涔欎簩閱囪兒锛堜笁瀛f垔鍥涢唶鏍革級锛岀洂閰哥洂浜у搧锛屼骇鍝佸彇浠g巼≥95%銆侟/p>
銆€銆€閿嚡绉戞妧鐨勭洂閰哥洂8鑷侾EG鑳?涓夊鎴婂洓閱?琛嶇敓鐗╁彲浠ヤ氦鑱旀垚鍙檷瑙g殑PEG姘村嚌鑳躲€備互涓夎仛瀛f垔鍥涢唶涓烘牳鑱氬悎鑰屾垚鐨?ARM(TP)-PEG鍘熸枡姣斾互鍏仛鐢樻补涓烘牳鑱氬悎鑰屾垚鐨?ARM-PEG鍏锋湁鍒嗘暎搴︿綆锛屽垎瀛愰噺鏇寸簿纭殑浼樺娍銆侾EG姘村嚌鑳跺湪鍖荤枟璁惧鍙婂啀鐢熷尰瀛︿腑鍏锋湁澶氱搴旂敤锛屽挨鍏堕€傜敤浜庤嵂鐗╃紦閲娿€?D涓?D缁嗚優鍩瑰吇鍙婁激鍙g殑瀵嗗皝涓庢剤鍚堢瓑棰嗗煙銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵8ARM(TP)-NH2HCl鍒嗗瓙閲?0000Da, 15000 Da,20000 Da,40000 Da浜у搧 1鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM(TP)-NH2HCl浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Kwong, G.A., et al., Mathematical framework for activity-based cancer biomarkers, PNAS, 2015, 12627–12632.
銆€銆€2. Frith, J.E., et al., Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials, 2014, 35(4): p. 1150-1162.
銆€銆€3. Ashley, G.W., et al., Hydrogel drug delivery system with predictable and tunable drug release and degradation rates, PNAS, 2013, 110(6) 2318-2323.
銆€銆€4. Menzies, D.J., et al., Tailorable Cell Culture Platforms from Enzymatically Cross-Linked Multifunctional Poly(ethylene glycol)-Based Hydrogels, Biomacromolecules, 2013, 14(2) p: 413–423.
銆€銆€5. Frith, J.E., et al., An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration, Biomaterials, 2013, 34(37), p. 9430-9440.
銆€銆€6銆乄ang, M., et al., A surface convertible nanoplatform with enhanced mitochondrial targeting for tumor photothermal therapy, Colloids and Surfaces B: Biointerfaces, 2020, V.189.
浜у搧璇环