浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€鍏噦鑱氫箼浜岄唶鐞ョ弨閰颁簹鑳虹惀鐝€閰搁叝浜у搧鍝佽川鍗撹秺锛屼骇鍝佸彇浠g巼≥95%銆侟/p>
銆€銆€閿嚡绉戞妧鐨?鑷侾EG鐞ョ弨閰颁簹鑳哄熀鐞ョ弨閰搁叝鍦≒EG鍜孨HS閰敭涓棿鏈夊彲瑁傝В鐨勯叝閿紝鎵€浠ュ彲鐢ㄤ簬浜よ仈鍒跺鍙瑙g殑PEG鍑濊兌琛嶇敓鐗╁彲浠ヤ氦鑱旀垚鍙檷瑙g殑PEG姘村嚌鑳躲€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵8ARM-SS鍒嗗瓙閲?0000Da, 15000 Da,20000 Da,40000 Da浜у搧 1鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM-SS浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Ju, Y., et al., Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells, Biomacromolecules, 2016.
銆€銆€2. Ju, Y., et al., Engineering Low-Fouling and pH-Degradable Capsules through the Assembly of Metal-Phenolic Networks, Biomacromolecules, 2015.
銆€銆€3. Giorgi, M.E., et al., Improved bioavailability of inhibitors of Trypanosoma cruzi trans-sialidase: PEGylation of lactose analogs with multiarm polyethyleneglycol. Glycobiology, 2012, 22(10): p. 1363-1373.
4.Li, S, et al., Quantitatively Tracking Bio–Nano Interactions of Metal–Phenolic Nanocapsules by Mass Cytometry. ACS Applied Materials & Interfaces. 2021.
浜у搧璇环