浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ叓鑷傝仛涔欎簩閱囧矾鍩轰骇鍝侊紝鍙栦唬鐜?ge; 95%銆侟/p>
銆€銆€閿嚡绉戞妧鐨?鑷傚矾鍩轰骇鍝佸彲浜よ仈鍒跺PEG姘村嚌鑳朵骇鍝併€侾EG姘村嚌鑳跺湪鍖荤枟鍣ㄦ鍜屽啀鐢熷尰瀛︽柟闈㈠挨鍏舵槸鍦ㄨ嵂鐗╃殑缂撻噴鎺ч噴锛?缁村拰3缁寸粏鑳炲煿鍏讳互鍙婁激鍙g殑缂濆悎鍜屾剤鍚堟柟闈㈡湁闈炲父骞挎硾鐨勫簲鐢ㄣ€傞敭鍑殑8鑷侾EG鍘熸枡鏉ラ€氳繃涓夎仛瀛f垔鍥涢唶鍜屼箼姘у熀鑱氬悎鑰屾垚锛屾瘡涓狿EG閾剧殑涔欐哀鍩哄崟鍏冩暟鐩笉鏄畬鍏ㄧ浉鍚岀殑銆傞敭鍑殑澶氳噦PEG浜у搧鐨勫垎瀛愰噺鎸囩殑鏄悇鑷傚垎瀛愰噺鐨勬€诲拰銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵8ARM-SH鍒嗗瓙閲 10000Da, 20000 Da浜у搧 1鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM-SH浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Rao, V.V., et al., Rescuing mesenchymal stem cell regenerative properties on hydrogel substrates post serial expansion, Bioengineering & translational medicine, 2019.
銆€銆€2. Brown, T.E., et al., Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange, Biomaterials, 2018.
銆€銆€3. Aziz, A.H., et al., Mechanical characterization of sequentially layered photo-clickable thiol-ene hydrogels, Journal of the Mechanical Behavior of Biomedical Materials, 2017, V. 65, p. 454-465.
銆€銆€4. Huynh, C.T., et al., Cytocompatible Catalyst-free Photodegradable Hydrogels for Light-Mediated RNA Release to Induce hMSC Osteogenisis. ACS Biomaterials Science & Engineering, 2017.
銆€銆€5. Suma, T., et al., Modulated Fragmentation of Proapoptotic Peptide Nanoparticles Regulates Cytotoxicity. J. Am. Chem. Soc., 2017, 139(11):4009-18.
銆€銆€6. Liang, Y., et al., Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels, Journal of Biomedical Materials Research Part A, 2016, V. 104:1, p. 113–123.
銆€銆€7. Lee, S., et al., Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release, Biomater. Sci., 2016.
銆€銆€8. Huynh, C.T., et al., Light-triggered RNA release and induction of hMSC osteogenesis via photodegradable, dual-crosslinked hydrogels. Nanomedicine, 2016.
銆€銆€9. Shih, H., et al., Photo-click hydrogels prepared from functionalized cyclodextrin and poly(ethylene glycol) for drug delivery and in situ cell encapsulation, Biomacromolecules, 2015.
銆€銆€10. Nguyen, M.K., et al., Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials, 2014, 35(24), p. 6278-6286.
銆€銆€11. Lee, S., et al., The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels, Acta Biomaterialia, 2014, 10(10), p. 4167–4174.
12.Wilson, RL, et al, Protein-functionalized poly (ethylene glycol) hydrogels as scaffolds for monolayer organoid culture. Tissue Engineering Part C: Methods. 2021, 27(1):12-23.
13.Castilho, M., et l., Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromolecules. 2021, 22(2):855-66.
14.McKee, C, et al., Transcriptomic analysis of naïve human embryonic stem cells cultured in three-dimensional PEG scaffolds. Biomolecules. 2021, 11(1):21.
15.Su, Q., et al., Facile preparation of a metal-phenolic network-based lymph node targeting nanovaccine for antitumor immunotherapy, Acta Biomaterialia, V. 158, 2023, P. 510-524.
16.Pham-Nguyen, O.V, et al., Complete breakdown of copper-free clickable doxorubicin nanoclusters for real-time tumor proliferation tracking, Chemical Engineering Journal, 468, 2023.
浜у搧璇环