浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ叓鑷傝仛涔欎簩閱囦笝鐑吀閰骇鍝侊紝鍙栦唬鐜?ge; 95%銆侟/p>
銆€銆€閿嚡绉戞妧鐨?鑷備笝鐑吀閰骇鍝佸彲浜よ仈鍒跺PEG姘村嚌鑳朵骇鍝併€侾EG姘村嚌鑳跺湪鍖荤枟鍣ㄦ鍜屽啀鐢熷尰瀛︽柟闈㈠挨鍏舵槸鍦ㄨ嵂鐗╃殑缂撻噴鎺ч噴锛?缁村拰3缁寸粏鑳炲煿鍏讳互鍙婁激鍙g殑缂濆悎鍜屾剤鍚堟柟闈㈡湁闈炲父骞挎硾鐨勫簲鐢ㄣ€傞敭鍑殑8鑷侾EG鍘熸枡鏉ラ€氳繃涓夎仛C5H12O4鍜屼箼姘у熀鑱氬悎鑰屾垚锛屾瘡涓狿EG閾剧殑涔欐哀鍩哄崟鍏冩暟鐩笉鏄畬鍏ㄧ浉鍚岀殑銆傞敭鍑殑澶氳噦PEG浜у搧鐨勫垎瀛愰噺鎸囩殑鏄悇鑷傚垎瀛愰噺鐨勬€诲拰銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵8ARM-ACLT鍒嗗瓙閲?0000Da, 20000 Da浜у搧 1鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM-ACLT浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, 67, P. 42-52.
銆€銆€2. Wei, Z., et al., 3D Printing of PEG Hydrogel Scaffolds Using Novel Low Toxicity Photoinitiator, Society for Biomaterials Meeting, 2018, poster presentation.
銆€銆€3. Carrion, B., et al., The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment, Advanced healthcare materials, 2016.
銆€銆€4. Zhang, Z., et al., Synthesis of Poly(ethylene glycol)-based Hydrogels via Amine-Michael Type Addition with Tunable Stiffness and Postgelation Chemical Functionality. Chemistry of Materials, 2014, 26(12), p. 3624-3630.
5. Carleton, M. M., et al., Methacrylic acid-based hydrogels enhance skeletal muscle regeneration after volumetric muscle loss in mice, Biomaterials, 2021, V. 275
6.McKee, C, et al., Transcriptomic analysis of naïve human embryonic stem cells cultured in three-dimensional PEG scaffolds. Biomolecules. 2021, 11(1):21.
浜у搧璇环