浜у搧涓績
鑱旂郴鎴戜滑
閿€鍞笓鐢細
鍦板潃锛氬寳浜競娴锋穩鍖鸿タ灏忓彛璺?6鍙蜂腑鍏虫潙涓滃崌绉戞妧鍥瑿-1妤间笁灞侟/p>

- 浜у搧鎻忚堪
- 鍙傝€冩枃鐚
-
銆€銆€閿嚡绉戞妧鎻愪緵楂樺搧璐ㄥ叓鑷傝仛涔欎簩閱囬┈鏉ラ叞浜氳兒浜у搧锛屼骇鍝佸彇浠g巼> 90%銆侟/p>
銆€銆€閿嚡绉戞妧鐨?鑷傞┈鏉ラ叞浜氳兒浜у搧鍙氦鑱斿埗澶嘝EG姘村嚌鑳朵骇鍝併€侾EG姘村嚌鑳跺湪鍖荤枟鍣ㄦ鍜屽啀鐢熷尰瀛︽柟闈㈠挨鍏舵槸鍦ㄨ嵂鐗╃殑缂撻噴鎺ч噴锛?缁村拰3缁寸粏鑳炲煿鍏讳互鍙婁激鍙g殑缂濆悎鍜屾剤鍚堟柟闈㈡湁闈炲父骞挎硾鐨勫簲鐢ㄣ€傞敭鍑殑8鑷侾EG鍘熸枡鏉ラ€氳繃涓夎仛瀛f垔鍥涢唶鍜屼箼姘у熀鑱氬悎鑰屾垚锛屾瘡涓狿EG閾剧殑涔欐哀鍩哄崟鍏冩暟鐩笉鏄畬鍏ㄧ浉鍚岀殑銆傞敭鍑殑澶氳噦PEG浜у搧鐨勫垎瀛愰噺鎸囩殑鏄悇鑷傚垎瀛愰噺鐨勬€诲拰銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵8ARM-MAL鍒嗗瓙閲?0000Da, 20000 Da,40000 Da浜у搧 1鍏嬪拰10鍏嬪寘瑁呫€侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵鍒嗚鏈嶅姟锛岄渶瑕佹敹鍙栧垎瑁呰垂鐢紝濡傛灉鎮ㄩ渶瑕佸垎瑁呬负鍏朵粬瑙勬牸璇蜂笌鎴戜滑鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鍚屾椂鎻愪緵鍏朵粬鍒嗗瓙閲忕殑8ARM-MAL浜у搧锛屽浣犻渶瑕佽涓庢垜鍙竤ales@jenkem.com鑱旂郴銆侟/p>
銆€銆€閿嚡绉戞妧鎻愪緵澶ф壒閲忕敓浜т骇鍝佸強GMP绾у埆浜у搧锛屽闇€鎶ヤ环璇蜂笌鎴戜滑鑱旂郴銆侟/p>
-
銆€銆€References:
銆€銆€1. Wang, J., et al., Multi-arm PEG-maleimide conjugation intermediate characterization and hydrolysis study by a selective HPLC method, Journal of Pharmaceutical and Biomedical Analysis, 2019, V. 164, P. 452-459.
銆€銆€2. Dumont, C.M., et al., Aligned hydrogel tubes guide regeneration following spinal cord injury, Acta Biomaterialia, 2019.
銆€銆€3. Verheyen, C.A. et al., Characterization of Polyethylene Glycol–Reinforced Alginate Microcapsules for Mechanically Stable Cell Immunoisolation, Macromolecular Materials and Engineering, 2019.
銆€銆€4. Schweikle, M., et al., Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels, Acta Biomaterialia, 2019.
銆€銆€5. Buss, C.G., et al., Protease activity sensors noninvasively classify bacterial infections and antibiotic responses, EBioMedicine, 2018, V. 38, P. 248-256.
銆€銆€6. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, V. 67, P. 42-52.
銆€銆€6. Villa, C., et al., Effects of Composition of Alginate-Polyethylene Glycol Microcapsules and Transplant Site on Encapsulated Islet Graft Outcomes in Mice, Transplantation, 2017, 101(5), 1025-35.
銆€銆€7. Darling, N.J., et al., Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly (ethylene glycol) hydrogels, Biomaterials, 2016.
銆€銆€8. Li, Y., et al., Non-Covalent Photo-Patterning of Gelatin Matrices Using Caged Collagen Mimetic Peptides, Macromolecular Bioscience, 2015, 15(1), 52-62.
銆€銆€9. Lu, H.D., et al., Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials, 2012, 33(7), p. 2145-2153.
銆€銆€10.Stock, A.A., et al., Conformal Coating of Stem Cell-Derived Islets for β Cell Replacement in Type 1 Diabetes, Stem Cell Reports, 2020, 14(1), P. 91-104
11.Kühn, S., et al., Tuning the network charge of biohybrid hydrogel matrices to modulate the release of SDF-1. Biological Chemistry. 2021.
12.Ciciriello, AJ, et al., IL鈥?0 lentivirus鈥恖aden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury. Biotechnology and Bioengineering. 2021.
13.Widener, AE, et al., Guest–host interlinked PEG-MAL granular hydrogels as an engineered cellular microenvironment. Biomaterials Science. 2021, 9(7):2480-93.
14.Bekdemir, A., et al., Ionic Liquid鈥怣ediated Transdermal Delivery of Thrombosis鈥怐etecting Nanosensors. Advanced Healthcare Materials. 2022.
15.Zhang H., et al., Reprogramming of Activated Pancreatic Stellate Cells via Mechanical Modulation of Transmembrane Force-sensitive N-cadherin Receptor. Journal of Molecular Biology. 2023; 435(1):167819.
16.Brown, T., et al., Design and development of microformulations for rapid release of small molecules and oligonucleotides, European Journal of Pharmaceutical Sciences, 188, 2023.
浜у搧璇环